The Organic No-Till Farming Revolution: High Production Methods for Small-Scale Farmers

Andrew Mefferd

New Society Publishers, January 2019, $29.99

 

Organic No-Till has been an unachievable goal for many of us, but there’s no need to feel guilty or ashamed! We may understand the biology, and even the physics and chemistry of it, and why it’s a Good Thing. We can see how it can be done on a domestic scale, especially by those who can grow or buy lots of mulch, and especially if there’s no need to account for time and money invested.  There is equipment (roller-crimpers and no-till planters) that makes large scale organic no-till possible and efficient. But for those of us growing food in the middle scale, it’s proving harder. Giant equipment works for acres of soybeans but not for market farming. How to keep the weeds away while tending forty sowings of lettuce? The Organic No-Till Farming Revolution provides very practical information for those who want to increase the amount of no-till growing on their small-scale farm.

 

Andrew Mefferd says in the introduction, “No-till is as much about climate change as it is about soil health as it is about farm profitability.” Work on all three at once with this book. 50-70% of the world’s carbon in farm soils is off-gassed due to tillage (according to a Yale study). This decreases soil fertility at a time when we need to grow more resilient crops to cope with climate change. Global food production could be reduced by up to 17% by 2100 due to climate-induced crop failures. All steps in a good direction are worth taking.

 

Andrew is not a proselytizer and this is not a religion. You don’t have to commit to permanent no-till everywhere to benefit from some very practical new skills, enabling you to increase the area in no-till practices. Different strategies work for different farms and different crops. Not inverting the soil layers is important. Any reduction in tillage is a good step; shallower is better than deeper; less often is better than after every crop. The tilther and power harrow on a shallow setting are used by some no-till farmers. One last tilling before setting up permanent beds is OK if that’s what you need to do! Think in terms of doing more no-till and take away any pressure to feel bad if you continue to do some tilling. One step at a time towards healing the earth, the climate; improving your soil and your crops.

 

The first part of the book explains the concepts and presents various methods: mulch grown in place; applied cardboard, deep straw or compost; occultation (tarping) and solarization (clear plastic). The main section consists of in-depth interviews with seventeen farmers about what works for them. After reading the first part, you can dive into the chapters with the methods that most appeal to you. The book is written so it doesn’t have to be read sequentially to make sense.

 

Andrew worked at Virginia Tech’s Kentland Research Farm on organic no-till vegetable production, using roller-crimpers and no-till drills. The next year he moved to a 3 acre farm and temporarily forgot about no-till because the methods he’d seen were not applicable to that scale. Ten years later, in 2016, he read articles in Growing for Market magazine, and attended conference workshops by farmers who were succeeding with organic no-till on smaller farms. These growers were using various different methods, and Andrew decided to visit them and write up the interviews.

 

“Want to build organic matter and soil biology because of the way you grow, instead of despite it?” Andrew asks. Increasing the organic matter in the soil will help the soil hold more water, suffer less from run-off and need less applied water per year (1″ (2.5 cm) of water saved per 1% increase in OM has been quoted). Carbon is stored in the soil, keeping it out of the atmosphere. Paying attention to the soil biology and feeding the soil is the heart of organic farming. We must farm more ecologically if we want to survive. At the same time, small-scale farms must be profitable to sustain the farmers. This book has many examples of farmers that started small with limited resources, and are able to make a decent living. Avoiding the need to buy heavy machinery is a big saving.

 

I love this surprise quote: “Tilling the soil is the equivalent of an earthquake, hurricane, tornado and forest fire occurring simultaneously to the world of soil organisms.” Which outspoken radical farming group made this proclamation? The USDA-NRCS! Taking care of the soil biology reduces the urge to compensate with chemistry. The less tillage, the better-off we can be. OM levels can rise quickly when tillage is reduced. Cover-cropping, adding compost and organic mulches are all ways to achieve this. The churning of tillage burns up OM. As Bryan O’Hara of Tobacco Road Farm, Connecticut, says, “Tillage is a nutrient flush from all the death you just wrought on the soil…Tillage doesn’t give nutrient balance, it gives you nutrient release.” More OM must be added every year just to maintain levels that were there before tilling.

 

Tarping is a rediscovered method that lets the soil digest the plant material without any tilling. This is especially useful when you have several weeks to spare after a harvest, but not enough time to grow a cover crop. The soil biology breaks down the residue, weed seeds germinate then die. The soil is left ready to replant.

 

After listing all the many benefits of no-till, Andrew explains the disadvantages. Weed control without cultivation is the main issue, especially perennial weeds. The slowness of mulched soil to warm in the spring is another. A third is that high OM can lead to more slugs. If you mulch with tree leaves, you might find squirrels and chipmunks rummaging for acorns. Grass creeps in from the edges. These problems are all addressed in the book.

 

The Overview of Organic No-Till Techniques is a summary of methods, biodegradable mulches and plastic sheet materials.

 

Biodegradable mulch grown in place is the method we used for many years for our large planting of paste tomatoes. We sowed winter rye, hairy vetch and Austrian winter peas in early September, following our spring broccoli and cabbage. At the beginning of May we mowed down the cover crop with our hay cutting machine and the next day dug holes and transplanted the tomatoes. We used a small shovel for our big transplants. Shawn Jadrnicek suggests using a stand-up bulb planter. The legumes provided all the nitrogen the crop needed, and the long-cut cover crop kept the weeds at bay for maybe 6 weeks. By then we had trellised the tomatoes and were able to unroll big round bales of spoiled hay between the rows. This dealt with the weeds for the rest of the season. One year in ten in our row crops rotation was no-till. We tried a few other applications of this method but generally they didn’t work as well. We were unable to direct-seed into cut mulch, for instance. Our watermelons didn’t like the cold soil, and we wanted watermelons in August, not October! To grow big enough cover crops for this to work, the food crop has to be planted no earlier than late April in central Virginia. Paste tomatoes worked well because we didn’t need an early harvest. Transplanted Halloween pumpkins and winter squash work. Fall cabbage and broccoli (on German millet and soybeans) can also work.

 

Bringing in biodegradable mulch (hay, straw, cardboard, paper, compost, tree leaves, wood chips, spent brewers’ grains) is the second method. The material needs to be spread thickly, usually 3″ (7.5 cm) or more and used appropriately (don’t switch plans and till in raw wood chips!). Straw can cost $750 per acre covered. A round bale covers about 200′ by 5′. We use hay bales or biodegradable plastic on annual crops, cardboard and wood chips around our fruit plantings. The existing weeds and crop residues will need to be removed first. Flaming works for small weeds, otherwise use one of the sheeting methods. Read the book to get the all-important details on how to be successful.

 

The non-biodegradable mulch methods are tarping (occultation) and solarizing. Tarping was introduced to most of us by Jean-Martin Fortier in The Market Gardener. For annual no-till crops, first tarp the soil using an opaque material such as silage tarps (or solarize in hot weather). After killing the weeds, uncover, spread mulch and transplant into it. Tarps will not kill docks or nut-sedge. Tarping takes from 3-6 weeks, (the shorter time in hotter weather). Allow longer if you’re bringing new land into production. Plan ahead, and tarp all winter. Silage tarps warm the soil for early spring plantings, and also prevent soil moisture from evaporating.

 

Solarization uses clear plastic (old hoophouse plastic is ideal). In a summer hoophouse, solarization can be as quick as 24 hours, Andrew says. When we’ve done this, one of our goals was to kill nematodes and fungal diseases, not just weeds, so we waited a few weeks. Outdoors it takes several weeks. You can see when the weeds are dead. Bryan O’Hara poked a thermometer probe through solarization plastic and found a 50F degree (28C) difference between the outside air and the soil immediately under the plastic; a 10F (6C) difference at 1″ (2.5 cm) deep and little temperature gain lower than that. Solarization does not kill all the soil life!

 

The growers interviewed explain which methods they use and why, helping readers weigh the pros and cons for the various crops we are growing, and our resources, climate and soils. Andrew offers some pointers on which methods are likely to work best for which situations. Several farmers tell how they transitioned into organic no-till for various crops, for instance buckwheat, compost and Weed Guard Plus paper mulch for a garlic crop, followed by two crops of lettuce. Mossy Willow Farm in Australia has a designated area for direct-seeded crops, where they use sprinklers, and the tilther if needed. The rest of their farm (transplanted) uses drip irrigation, but the soil does get too clumpy for direct seeding, and is slower to improve.

 

Farmers also address the things that went wrong while they were learning (thin stands of cover crops, cover crops not dying, getting the timing wrong on seeding or roll-crimping, weed seeds blowing in from elsewhere). They describe equipment they found helpful (drop-spreaders to lay down even layers of woodchips or compost, landscape fabric, the stand-up bulb planter, Tilther, Jang seeder, paperpot transplanter, broadfork). They also address timing of cover crop sowing to avoid warm-season and cool-season weeds; extending the weed suppression period of cut or crimped cover crops by adding tree leaves; pre-irrigating before digging transplant holes; and many other tips to success. A strategy for tall crabgrass is to mow it down, cover with newspaper and compost. A border of comfrey plants all-round the garden does a great job of keeping grass out. You can quickly see how this book will pay for itself many times over!

 

No-till beds are ready for early spring crops, even in wet regions, if the beds are mulched overwinter. Because no-till builds soil upwards, it is a good technique for land that is very rocky or with shallow topsoil. Another advantage of no-till is that you can install fairly permanent irrigation (drip or sprinklers). And you can farm intensively on small areas without needing to cater to the turning radius of large machinery. Getting high productivity from small areas is becoming an essential factor to consider.

 

Potatoes are a soil disruptor, and can bring up new weed seeds, so it’s worth covering the beds as soon as the potatoes are harvested. At Four Winds Farm in New York State, they plant garlic in the fall after potatoes, then mulch over the top of the garlic with a thick layer of compost. In their bigger plan, they only plant garlic in every other bed (although composting all). The following spring they plant winter squash in the empty beds, which can take over all the space after the garlic is harvested.

 

As I read the interviews, I started to worry: were none of these farmers having a problem using such high amounts of compost? The first problem is making or buying the sorts of quantities they are using, but the second is a build-up of phosphorus, which we have experienced on our farm. Singing Frogs Farm has studied this, testing the water run-off in the ponds at the low-point of their land. The phosphorus stays in place in their system, it does not leach. Nor does the nitrogen. The soil biology sponges up the nutrients, the 3-8 crops they grow in a year absorb them. They don’t rely on compost for fertility, but now   use pelleted feather meal, calcium and rock dusts. Their compost use is 0.5″ (< 1 cm) per year, very different from the many farmers using much more.

 

Daniel Mays at Frith Farm in Maine believes cover crops provide a more active kind of organic matter, which is tailored to the soil. He is seeing better results than with compost. Roots in the Ground! Hedda Brorstrom, of Full Blossom Flower Farm, Sebastopol, CA is trending in the other direction. She points out that a lot of the compost for sale is made with lots of animal manures, which does send the phosphorus levels way up. Because growing cover crops was not working for her, she researched available composts carefully. High-carbon compost is a way to avoid sending the phosphorus levels up too much. She has used 4-8″ (10-20 cm) of compost per year.

 

Neversink Farm in New York’s Catskill Mountains point to intensive production (“the greenhouse mentality writ large”), 5 people working on 1.5 acres of permanent (not-raised) beds, and direct sales to customers, as factors in their success. As Conor Crickmore says proudly, “Our farming practices may be radical but they have resulted in our farm being one of the highest production farms per square foot in the country.” Close to $400,000 gross on 1.5 acres!

 

The collected wisdom and experience in The Organic No-Till Farming Revolution can save newer no-till farmers from a lot of frustration and wasted time, money and mental and emotional energy.

 

By Pam Dawling